Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(7): e10262, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37408625

RESUMO

Carnivorous mammals disperse seeds through endozoochory and diploendozoochory. The former consists of ingestion of the fruit, passage through the digestive tract, and expulsion of the seeds, a process that allows scarification and dispersal of the seeds over long or short distances. The latter is typical of predators that expel seeds that were contained in the prey and the effects of which may differ from those of endozoochory with respect to the retention time of the seeds in the tracts, as well as their scarification and viability. The objective of this study was to conduct an experimental evaluation comparing the capacity of each mammal species in terms of the dispersal of Juniperus deppeana seeds and, at the same time, to compare this capacity through the two dispersal systems: endozoochory and diploendozoochory. We measured dispersal capacity using indices of recovery, viability, changes in testas, and retention time of seeds in the digestive tract. Juniperus deppeana fruits were collected in the Sierra Fría Protected Natural Area in Aguascalientes, Mexico, and were administered in the diet of captive mammals: gray fox (Urocyon cinereoargenteus), coati (Nasua narica) and domestic rabbits (Oryctolagus cuniculus). These three mammals represented the endozoochoric dispersers. For the diploendozoochoric treatment, seeds excreted by rabbits were incorporated into the diets of captive mammals: bobcat (Lynx rufus) and cougar (Puma concolor), in a local zoo. Seeds present in the scats were then collected, and recovery rates and retention times were estimated. Viability was estimated by X-ray optical densitometry and testa thicknesses were measured and surfaces checked using scanning electron microscopy. The results showed a recovery of seeds greater than 70% in all the animals. The retention time was <24 h in the endozoochory but longer at 24-96 h in the diploendozoochory (p < .05). Seed viability (x¯ ± SD) was decreased in rabbits (74.0 ± 11.5%), compared to fruits obtained directly from the canopy (89.7 ± 2.0%), while gray fox, coati, bobcat, and cougar did not affect seed viability (p < .05). An increase in the thickness of the testas was also observed in seeds excreted from all mammals (p < .05). Through evaluation, our results suggest that mammalian endozoochory and diploendozoochory contribute to the dispersal of J. deppeana by maintaining viable seeds with adaptive characteristics in the testa to promote forest regeneration and restoration. In particular, feline predators can provide an ecosystem service through scarification and seed dispersal.

2.
Toxins (Basel) ; 14(5)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35622539

RESUMO

Contamination of food chains by toxigenic fungi and aflatoxins is a global problem that causes damage to human health, as well as to crop and livestock production. The objective is to evaluate Aspergillus flavus and total aflatoxins (AFs) occurrence in totally mixed rations (TMRs) for dairy cows and aflatoxin M1 (AFM1) in milk for human consumption. Ninety-nine dairy production units located in Aguascalientes, Mexico, were randomly selected, and samples were collected from TMRs, raw milk, and milk marketed in the city in two consecutive agricultural cycles. AFs were quantified in TMRs and milk by indirect enzyme immunoassay and HPLC; aflatoxigenic and molecular (PCR) capacity of monosporic A. flavus isolates in the feed was characterized. All feed, raw, and pasteurized milk samples showed aflatoxin contamination (26.0 ± 0.4 µg/kg, 32.0 ± 1.0, and 31.3 ± 0.7 ng/L, respectively), and a significant proportion (90.4, 11.3, and 10.3%) exceeded the locally applied maximum permissible limits for feed and milk (20.0 µg/kg and 50 ng/L). Aflatoxin contamination in both TMRs and milk indicated a seasonal influence, with a higher concentration in the autumn-winter cycle when conditions of higher humidity prevail. The results obtained suggest the existence of contamination by aflatoxigenic A. flavus and aflatoxins in the diet formulated for feeding dairy cows and, consequently, in the dairy food chain of this region of the Mexican Highland Plateau.


Assuntos
Aflatoxina M1 , Aflatoxinas , Aflatoxina M1/análise , Aflatoxinas/análise , Animais , Aspergillus flavus , Bovinos , Feminino , México , Leite/química
3.
Ecol Evol ; 11(9): 3794-3807, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976775

RESUMO

The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X-rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick-testa seeds (1,480 µm) in temperate forest and thin-testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.

4.
Ecol Evol ; 10(6): 2991-3003, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211171

RESUMO

Some carnivorous mammals ingest fruit and disperse seeds of forest plant species capable of colonizing disturbed areas in ecosystems. The objective of the present study was to evaluate the dissemination of Arctostaphylos pungens and Juniperus deppeana seeds by the gray fox (Urocyon cinereoargenteus), coyote (Canis latrans), and other carnivores in the Protected Natural Area Sierra Fría, in Aguascalientes, Mexico. Scat collection was undertaken via transects using the direct search method, while the seasonal phenology of A. pungens and J. deppeana was evaluated by recording flower and fruit abundance on both the plant and the surrounding forest floor ground. Seed viability was assessed by optical densitometry via X-ray and a germination test. It was found that the gray fox, coyote, ringtail (Bassariscus astutus), and bobcat (Lynx rufus) disseminated seeds of A. pungens (212 ± 48.9 seeds/scat) and J. deppeana (23.6 ± 4.9 seeds/scat), since a large proportion of the collected scat of these species contained seeds (28/30 = 93.33%, 12/43 = 27.9%, 6/12 = 50% and 7/25 = 28% respectively). The gray fox, coyote, ringtail, and bobcat presented an average of seed dispersion of both plant species of 185.4 ± 228.7, 4.0 ± 20.0, 12.1 ± 30.4, and 0.8 ± 1.5 per scat; the seed proportions in the gray fox, coyote, ringtail, and bobcat were 89.6/10.4%, 82.3/17.7%, 90.4/9.6%, and 38.1/61.9% for A. pungens and J. deppeana, respectively. The phenology indicated a finding related to the greater abundance of ripe fruit in autumn and winter (p < .01). This coincided with the greater abundance of seeds found in scats during these seasons. Endozoochory and diploendozoochory enhanced the viability and germination of the seeds (p > .05), except in those of A. pungens dispersed by coyote. These results suggest that carnivores, particularly the gray fox, the coyote, and the bobcat, play an important role in forest seed dissemination, and thus forest regeneration, by making both a quantitative and qualitative contribution to the dispersal of the two pioneer species under study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...